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In [1] the conditions of propel lant  quenching were subjected to exper imenta l  invest igat ion.  It was es tabl ished that 
burning  ceases  when the combust ion wave approaches to within a cer ta in  dis tance of the meta l -prope l lan t  contact.  The 
thickness of the unburnt  propel lant  res idue depends on the p r e s s u r e  at which the test  is conducted. In [1, 2] exper i -  
mental  values of this quantity were compared with values calculated in accordance with the Zel 'dovich theory [3, 4]. A 
more detailed analys is  of the exper imenta l  resu l t s  and the theory of propel lant  quenching reveals  a se r i e s  of new facts 
and shows convincingly that the exis t ing theory is unable to give a consis tent  descr ip t ion  of the exper iments  in question.  

According to the Zel 'dovich theory [3, 4], quenching takes place when the tempera ture  gradient  at the burning s u r -  
face exceeds a ce r ta in  c r i t i ca l  value 

,i u o ( p ,  T o  rain) 
q~* = ~ [Ts (p) -- T Omin] 

Here u~ To min) is the m i n i m u m  s teady-s ta te  burn ing  ra te ,  p is p r e s su r e ,  T O min is the min imum ini t ial  p ro -  
pel lant  t empera tu re  at which s teady-s ta te  burning  is poss ible ,  ~ is the rmal  diffusivity, and Ts(P) is the tempera ture  of 
the burning  surface .  In this theory the quenching condition can also be wri t ten in one of the following equivalent forms:  

a) u : U~ = u ~ (p, T o rain), 
1 

b) To = T o rain ~ Ts - -  - ' ~  

(0  In uO \ 

c) s=~3(T~ --r0) = 1. 

It is a s sumed  that the t empera tu re  of the burn ing  surface does not depend on the ini t ia l  t empera tu re  and hence on 
the t empera tu re  gradient .  It should be noted that in this model before quenching the burn ing  rate can only decrease ,  
the lower l imit  of the burning rate being nonzero and equal to Umin ~ 

The quenching conditions formulated a re  not applicable to the bal l i s t i te  (N powder) used in the exper iments  de-  
scr ibed  in [1]. This is associa ted with the following facts: 1) in [5, 7] it was establ ished that N powder will bu rn  
stably in the steady state at values of the p a r a m e t e r  r cons iderably  exceeding unity; 2) N powder has a so-cal led  
"anomalous" dependence of s teady-s ta te  burning  rate on ini t ial  t empera tu re ,  fi is a var iable;  3) the dependence u(~) of 
the nonsteady burn ing  rate of N powder on the t empera tu re  gradient  ~o at the burn ing  surface  differs sharply from the 
dependence 

u (p, ~) = a~" ~xp 18, (r, -- ~/u)], 

valid for fl = const  and used in the theory [3, 4]. Curves 1, 2, 3, and 4 in Fig. 1, constructed in accordance with the 
data of [5 -7] ,  give the ~(u) dependence for N powder at p r e s s u r e s  p = 1, 10, 20, 50 at, Without dwelling on the a s -  
sumptions used in const ruct ing the ~(u) dependence from the empi r i ca l  s teady-s ta te  dependence u~ we consider  
ce r ta in  cha rac te r i s t i c  features of the function ga(u) for subs tances  with an anomalous t empera tu re  dependence of the 
s teady-s ta te  burning  rate .  We f i rs t  write out the following re la t ions ,  which will  be useful  in what follows: 

09 u ~ ors 09 0~ [ an0 ~-t 
~'l'o - -  ~ (~ + r - t )  r =  OTo  ' Ou - -  cOTo ~, OTo ] " 

Clear ly ,  the sign of the der ivat ive Ocp/~u coincides with the sign of the quanti ty ~ + r - 1 .  

The exis tence of a m in imum on the ~(u) curve for N powder may be assumed solidly es tabl ished.  The presence  
of a m in imum is eas i ly  perceived mere ly  f rom the fact that in the case of a condensed sys t em with a sharply increas ing  
t empera tu re  coefficient of the burning  rate the p a r a m e t e r  ~ changes sharply  f rom values substant ia l ly  less than unity 
to values subs tant ia l ly  g rea t e r  than unity. Since in accordance with data of [7, 8] the quanti ty r is smal l  (r = 0 .0-0 .5) ,  
there  is a value of the ini t ia l  t empera tu re  T02,* at which 3q~/0u = 0. The values of the t empera ture  gradient  andburn ing  

262 



3"105 ~, deg/cm 

t0 t,f g~mm/sec 

S 

{ 
Ln U~mmls~ 

S f g 
Fig. 1 

Ill" . . . . . . . . . .  
A/ ,) 

i- vJ : 

Fig.  2 

ra te  at this point wil l  be denoted by ~92", u2*; in [9] it is a s sumed  that in the region of values u < u2* the ~v(u) depend- 
ence is in te r rup ted  at the " e x t r e m e "  point ~' = ~i  cor responding  to the onset  of quenching. The qual i ta t ive  c h a r a c t e r -  
i s t i cs  of the cp(u) curve  a re  i l lus t ra ted  in Fig. 2. 

However ,  this quenching c r i t e r i o n  l ikewise does not account for the resu l t s  of exper iments  on quenching near  a 
me ta l -p rope l l an t  contact .  The expe r imen t s  were  conducted at room init ial  t empera tu re ,  whereas  T02* < 20 ~ C for 
p r e s s u r e s  p ---al at .  T h e r e f o r e ,  as the combust ion wave approaches  the p r o p e l l a n t - m e t a l  contact,  when the t e m p e r a -  
ture  gradient  at the burning sur face  can only i nc rea se ,  the r ep resen ta t ive  point on the (P(u) curve  can move only to the 
r ight ,  in the d i rec t ion  of an inc rease  in burning ra te ,  moving away f r o m  the left-hand e x t r e m e  point (ui, ~i) .  It is in- 
t e res t ing  to note that the known exper imen ta l  data do not exclude the poss ib i l i ty  of the exis tence  of a m ax imum of the 
(P(u) curve  at u < u2*. Since,  in accordance  with [8], r = 0, at T o = - 1 8 3  ~ C and/3 = (1.9-2.2)10 -3 " deg - I  ~ = 1 . 0 - 1 . 1  
and near  this value of the ini t ial  t empe ra tu r e  the der iva t ive  d ~p/du vanishes .  

We a s s u m e  that in the expe r imen t s  on propel lant  burning near  a meta l  contact  a t  T o < T02* quenching can take 
place both at (p = ~Pi (in accordance  with [9]) and at q9 = ~1" ,  i .e . ,  at the " lef t -hand" max imum of the gradient .  Clear ly ,  
an invest igat ion of the t rans i t ion  of a combust ion wave f rom one propel lant  to another  ac ross  a plane in ter face  wilt  
s e rve  as a s imple  expe r imen ta l  method of invest igat ing the ~V(u) dependence in the region u < u2*. By se lec t ing  an ap- 
p ropr ia te  pa i r  of propel lants  and a sui table  p r e s s u r e  and ini t ial  t em pe ra tu r e ,  it is poss ib le  to obtain values of the t e m -  
pe ra tu re  gradient  c lose to both ~Pi and ~vl*. The quenching conditions (To*) in the region T o > T02* can also be ob- 
tained, using Novozhi lov ' s  definition [10] of the combust ion s tabi l i ty  l imit ,  in the form: 

[, ( To * )  - -  ~ t ~ 
r (To*) -- , (7'0*) + t �9 

A compar i son  of the values of To* and r  0.) obtained f rom this equation with the values of the same  quant i t ies  
for the q~(u) curve  in the reg ion  T o > T02* for N powder at p = 1 and p = 20 at [7] shows that onthis bas is  a consis tent  ex-  
planation of the quenching exper iments  is imposs ib le .  This is' a s soc ia ted  both with the inaccuracy  of the exper imenta l  
de te rmina t ion  of Ts(T 0) and with ce r ta in  l imitat ions of the theory .  At e leva ted  values of the ini t ial  t empe ra tu r e  and 
burning ra te  (To > T02*) the idea of a n i n e r t i a  less  reac t ion  zone, on which the theory of [10] is based ,  loses its val idi ty  
owing to the inc rease  in the sur face  t empera tu re  Ts and the cor responding  inc rease  in zone width. 

A consis tent  explanation of the expe r imen ta l  resu l t s  desc r ibed  in [1] can evident ly  be obtained by assuming 
e i the r  that the ~(u) dependence has a "r ight-hand e x t r e m e "  point (T0j, uj), or  that the (P(u) dependence has a " r igh t -  
hand" max imum (T03*, u3*) T03* > T02* ; (O(P/DU)u=u3. = 0. As the combust ion wave approaches  the me ta l -p rope l l an t  
contact ,  the r ep re sen ta t ive  point moves  to the r ight  f rom its s ta r t ing  posi t ion (point A in Fig. 2). Only this motion 
sa t i s f ies  the r equ i r emen t s  of an inc rease  in the t e m p e r a t u r e  gradient  at the burning su r face .  When e i t h e r  of the points 
(T0j, uj) o r  (T03*, u3*) is reached ,  burning cea se s ,  s ince the fur ther  motion of the r ep re sen t a t i ve  point along the ~v(u) 
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curve with inc rease  in gradient  becomes imposs ib le .  The re la t ive  posit ion of the maximum point and the r ight-hand 
ex t reme point cannot be establ ished a pr ior i .  

The physical  na ture  of the r ight-hand ex t reme point may be associated with the instabi l i ty  of a sufficiently thick 
layer  of s t rongly  heated explosive,  such as the react ion zone at high init ial  t empera tu re s .  It is in teres t ing  to note that 
a s i m i l a r  ins tabi l i ty ,  caused by the difference between the propagation velocity of the exothermie react ion front in a 
condensed medium and the gasification rate ,  has been associated by Zel 'dovich [3] with t rans i t ion  from combustion to 
detonation. It may be assumed that under  cer ta in  conditions the react ion zone enters  a c r i t ica l  s tate,  a layer  of mate-  
r ia l  d i rect ly  adjacent to the burn ing  surface  undergoes a form of thermal  explosion, and the combustion wave is mech-  
anica l ly  dest royed.  

The assumpt ion  of the exis tence of a r ight-hand ex t reme point on the cp(u) curve implies  the physical  coro l la ry  of 
nonsteady burning  and quenching of the propel lant  in the p resence  of var iable  p r e s s u r e .  The ~Piu) dependence for a 
sys t em with an anomalous u~ dependence is shown in Fig. 3 for two different p r e s su r e s  (Pl > P2); the s ta r t ing  pos i -  
tion of the represen ta t ive  point is denoted by A, the final posit ion for a steady slow fall in p r e s su re  by I3; in the figure 
the line marked s is the t ra jec tory  of the represen ta t ive  point for a slow fall in p r e s su re .  In [9] it was shown that in 
the p resence  of a sharp smal l -ampl i tude  p r e s s u r e  drop the representa t ive  point moves along the line Ts = const {line 
r). Clearly,  in the p resence  of a r ight-hand ex t reme point j a s i tuat ion is possible  in which the r - l i ne  passes  outside 
that point.  A sharp p r e s s u r e  drop involves the poss ib i l i ty  of quenching associated with the existence of a r ight-hand 
ext reme point on the ~P(u) curve.  

The assumpt ion  of the p resence  of a r ight-hand extreme point also leads to the poss ibi l i ty  of an unusual physical 
effect - quenching assoc ia ted  with a sharp r i se  in p r e s s u r e .  The arrows in Fig. 4 indicate the t r a j ec to ry  of the r e p r e -  
sentat ive point in the p resence  of a sharp p r e s s u r e  r i se  (Pl > P2 )~ It is impor tant  that in the process  of nonsteady v a r i a -  
tion of the burn ing  rate the ins tantaneous burning  rate r ;~ 0 may exceed the equ i l ib r ium s teady-s ta te  value uB ~ c o r r e s -  
ponding to the p r e s su re  Pl. If the difference is sufficiently great ,  the burn ing  rate may reach the value uj and burn ing  
will cease .  

Fig. 3 Fig. 4 

At the point (u2*, (P2*) the der ivat ive  Ou/Oq~ = ~ and therefore  in the neighborhood of this point the s tabi l i ty  
analys is  pe r fo rmed  in [10] is inapplicable.  It may be assumed that in this case the iner t ia  of the reac t ion  zone is a 
s tab i l iz ing  factor. 

Let us now cons ide r  the poss ib i l i t ies  of a theory of nonsteady propel lant  burning  rates  based on a l i n e a r - f r a c -  
t ional approximation of the ini t ia l  t empera tu re  dependence of the burn ing  ra te :  u~ = apV(1 + ~T0) / (1 -TTn) .  In [11] 
for N powder at p = l at it was assumed  that: o~ = 4"  10 -4deg  - 1 , 7  = 1 4 "  10 - 4 d e g  -1, r = 0, T s = 600~ For  the 
quantity Ocp/~u we have 

Oe# ap v i -{- ~To [ (~ -}- %') (T s -- To) __ ~ 
"@u - -~ i--%'To[ (i ~-aT4(i--%'To ) J 

Thus, the sign of the derivative a~o/~tl coincides with the sign of the quadratic trinomial O~TT02-2~T0 + [(o~ + 

T)T0-1], whose roots are (T0) i = 1300 ~ K; (T0) 2 = 107 ~ K. Therefore in the region of values of the initial temperatures 

0 < T O < T s we have the following relations: 

0r 0r _ O~ 
OTo > 0 (0 < 1'o < (To)s), ~ -- 0 (To • (To)~), ~ <: 0 (To :> (To)s) 

and, consequently,  the genera l  cha rac te r  of the q~(u) dependence for a l inea r - f rac t iona l  approximation of u~ is s i m i -  
lar  to the case examined by Zel 'dovich.  
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It is in te res t ing  to cons ider  ce r ta in  cases  of propel lant  quenching caused by the existence of a min imum cr i t ica l  
t empera tu re  gradient  ~2"(u2") on the exper imenta l  q~(u) curve.  For example,  when combust ion waves propagate to-  
ward each o ther ,  as the burning  surfaces  approach,  the t empera tu re  in the region between them inc reases  and the t em-  
pera tu re  gradient  at the burning  surfaces  will  at a cer ta in  ins tant  of t ime become less  than (f12* and burning  must  
cease.  The p rob lem of the burning  of thin layers  of propel lant  was solved theore t ica l ly  in [11]. However,  in o rde r  to 
obtain a nonsteady burning  law the authors of that paper  used a l inea r - f rac t iona l  approximation and therefore  were un-  
able to detect  quenching in "counterburning."  Quenching may be expected at ~ = ~2" if the combust ion wave propa-  
gates through a nonuniformly heated propel lant  spec imen in the d i rec t ion of r i s ing  t empera tu re .  In other  words,  a t em-  
pera ture  wave moving toward the combust ion wave may quench the propellant~ 

A s imple  exper imenta l  modification of counterburning  is the combust ion of a propel lant  close to its contact with 
a the rmal ly  insulat ing (adiabatic) subs[ra te .  In pa r t i cu la r ,  the end of a propel lant  spec imen in contact with a gas may 
be assumed the rmal ly  insulated.  In this case unde r  o rd ina ry  conditions there is no unburnt  res idue .  This may be ex-  
plained as follows: the p rogress ive  gasif icat ion of the ma te r i a l  in the combust ion wave may conventionally be called 
normal ,  if the re la t ion  between the t empera tu re  gradient  ~ at the surface and the gasification rate u sa t is f ies  the ~(u) 
dependence obtained by calculat ion from u~ Obviously, apar t  f rom normal  gasif icat ion,  abnormal  gasif icat ion not 
associated with combust ion is also possible .  If, for example,  an ex te rna l  heat flux such that ~ > ~3",  is supplied to 
the propel lant  surface ( l inear  pryolysis) ,  then the surface gasif icat ion will be abnormal .  Volume abnormal  gasif icat ion 
is also possible  - in terna l  the rmal  decomposi t ion at a sufficiently high t empera tu re .  In counterburning  af ter  a min i -  
mum gradient  ~o2" is reached the unburn t  res idue  may be heated to a t empera tu re  so high that volume the rmal  decom- 
posi t ion actual ly  completes its gasif icat ion.  

The state in which the propel lant  exists  under  conditions with ~ < ~2" is evidently real ized in o rd ina ry  s teady-  
state burning .  The d i spersed  par t ic les  of condensed phase in the combust ion zone have sma l l  d imens ions  on the order  
of (0~ ~</u ~ = 10-4-10 -5 cm and a t empera tu re  close to T s. For  these par t ic les  the heating t ime is smal l  
7" ~ r2/~4 = (10 - 5 - 1 0  -6) see; therefore  while a d ispersed par t ic le  remains  in the dark zone nea r  the burning  surface ,  
the t empera tu re  gradient  at  the surface  of the par t ic le  is smal l  and norma l  surface gasif icat ion of the par t ic le  is im-  
poss ible .  The nature  of the var ia t ion  of the nonsteady burning  rate before quenching is de te rmined  not only by the 
quenching conditions but also by the ini t ia l  posit ion of the represen ta t ive  point.  It is c l ea r  f rom Fig~ 2 that in the ca se  
of quenching on a the rmal ly  insula t ing subs t ra te ,  depending on the choice of s ta r t ing  s teady-s ta te  burning  regime,  de-  
t e rmined  by the in i t ia l  t empera tu re  of the spec imen,  both an inc rease  and a decrease  in burning  rate to u(~2*) are  
possible  before quenching. If the s tar t ing  regime is represen ted  by the point A, i .e. ,  T O > T02*, then as the t e m p e r a -  
ture  gradient  at the burn ing  surface falls,  the burning  rate must  also fall. If at the same p r e s s u r e  the ini t ia l  t empe ra -  
ture  is taken less than T02* (point B), then a fall in gradient  before quenching must  be accompanied by an inc rease  in 
burning  ra te .  In the exper iments  on the quenching of a propel lant  on an i so thermal  (metal) subs t ra te ,  before quenching 
the burn ing  rate must  i nc rease ,  if the r ep resen ta t ive  point has a s ta r t ing  posi t ion in the region where 3(p/3T 0 > 0 (point 
A). If the exper iments  take place at ini t ial  t empera tu res  close to room tempera tu re ,  the expected increase  in burning  
rate should be not less than u~ ~ C)-u~ ~ C) ~ 3 m m / s e c ,  i .e . ,  a factor of 6. If the ini t ia l  s teady-s ta te  regime is 
located in the region T o < T02* (point B) an inc rease  in gradient  must  be accompanied by a fall in burn ing  ra te .  The 
exper imenta l  ver i f ica t ion  of these laws requi res  a p rec i s ion  method of measur ing  the burning  rate with high t ime r e so -  
lution. 

Condensed sys tems  differing with respec t  to the s teady-s ta te  burn ing  mechan i sm also differ with respect  to non-  
steady burning laws. The ~(u) dependences for te t ryl  and ammonium perch lora te  are  shown in Fig. 1. For  te t ry l  the 
t empera tu re  of the burning surface is equal to the boil ing point,  and the p a r a m e t e r  ~ < 1 despite the fact that, in accord-  
ance with [12], the heat r e lease  in the condensed phase of the combust ion zone is large.  

For ammonium perchlora te  the Ts(T 0) dependence is not known. The nonsteady burn ing  law ~(u) shown in Fig. 1 
has been constructed on the assumpt ion  that T s = 450 ~ C, r = 0. In this case e ~ 1, 3 r  ~ 0. It should be noted that 
for ammon ium perchlora te  a left-hand ext reme point on the (P(u) curve undoubtedly exis ts .  An example i l lus t ra t ing  the 
correspondence of the theoret ica l  and exper imenta l  r re la t ions  is supplied by the data of [5] on ni t roglycol ,  for 
w h i c h T s  = Tb, r = 0, ~< 1. 

Thus,  an examinat ion of exist ing ideas concerning the combust ion of condensed sys tems  shows that the quenching 
c r i t e r ion  for condensed sys tems with an anomalous t empera tu re  dependence of the s teady-s ta te  burning rate can be 
represen ted  in three forms:  1) (p = q~i or (Pi*), 2) r = ~2" = q~min, 3) q~ = q~j or ~2"). The choice of a specific 
form of the quenching condition is de te rmined  by the exper imenta l  condit ions.  The resu l t s  of exper iments  on the quench- 
ing of N powder nea r  a metal  contact can be explained by assuming ,  for example,  the existence of a r ight-hand extreme 
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point on the go{u) curve.  For  condensed sys tems  with an anomalous go(u) dependence both an increase  and a decrease  
in the burn ing  rate before  quenching are  possible  depending on the exper imenta l  conditions.  The existence of a r ight-  
hand ex t reme point on the go(u) curve impl ies  the poss ibi l i ty  of quenching in the presence  of a sharp r i se  or fall in 
p r e s s u r e .  A physical  consequence of the existence of a min imum tempera ture  gradient  is quenching in the presence  of 
counterpropagat ion of a combust ion wave and a t empera tu re  wave or two combust ion waves.  
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